1.Pu, Y*., Chen, J., Jiang, D. et al. (2022). Improved Method for Acoustic Emission Source Location in Rocks Without Prior Information.Rock Mech Rock Eng55, 5123–5137 2. Chen, J., Ye, Y.,Pu, Y*., Xu, W., & Mengli, D. (2022). Experimental study on uniaxial compression failure modes and acoustic emission characteristics of fissured sandstone under water saturation.Theoretical and Applied Fracture Mechanics, 119, 103359. 3. Chen, J., Zhu, C., Du, J.,Pu, Y*., Pan, P., Bai, J., & Qi, Q. (2022). A quantitative pre-warning for coal burst hazardous zones in a deep coal mine based on the spatio-temporal forecast of microseismic events.Process Safety and Environmental Protection, 159, 1105-1112. 4. Du, J., Chen, J.,Pu, Y*., Jiang, D., Chen, L., & Zhang, Y. (2021). Risk assessment of dynamic disasters in deep coal mines based on multi-source, multi-parameter indexes, and engineering application.Process Safety and Environmental Protection, 155, 575-586. 5.Pu, Y., Chen, J., & Apel, D. B. (2021). Deep and confident prediction for a laboratory earthquake.Neural Computing and Applications, 33(18), 11691-11701. 6.Pu, Y.,Apel, D. B., Liu, V., & Mitri, H. (2019). Machine learning methods for rockburst prediction-state-of-the-art review.International Journal of Mining Science and Technology, 29(4), 565-570. 7.Pu, Y., Apel, D. B., Szmigiel, A., & Chen, J. (2019). Image recognition of coal and coal gangue using a convolutional neural network and transfer learning.Energies, 12(9), 1735. 8.Pu, Y., Apel, D. B., & Xu, H. (2019). Rockburst prediction in kimberlite with unsupervised learning method and support vector classifier.Tunnelling and Underground Space Technology, 90, 12-18. 9.Pu, Y*., Apel, D. B., & Hall, R. (2020). Using machine learning approach for microseismic events recognition in underground excavations: Comparison of ten frequently-used models.Engineering Geology, 268, 105519. 10.陈结,杜俊生,蒲源源,等.冲击地压“双驱动”智能预警架构与工程应用[J].煤炭学报,2022,47(2):791-806.
|