报告人:陈孝伟(南开大学)
时间:2023年12月21日 15:00-
地址:数统学院LD402
摘要:This article presents a high-dimensional quantile regression framework toforecast Value at Risk (VaR) and Expected Shortfall (ES) simultaneously based on thenature of Multivariate Asymmetric Laplace (MAL), where "high-dimension" implies alarge bunch of assets and associated idiosyncratic factors. We generalize the traditionaljoint quantile regression framework to a time-varying setting, which allows us to capturethe dynamic tail interdependence among assets. The proposed methodology is highlyflexible and computationally tractable. A closed-form likelihood expression allows forstraightforward parameter estimation, and the factor structure makes the model scalableto high dimensions. Applying this new statistical model to a panel of 50 stocks from11 sectors of S&P 500 index over 2001-2021, we show that our model performs well onout-of-sample VaR and ES.
简介:南开大学金融学院精算学系教授、博士生导师,美国伊利诺伊大学、韩国木浦海洋大学访问学者,研究方向为保险精算学、定量风险管理,发表论文50余篇。主持参与国家级、省部级和横向课题十几项。入选天津市首批“用三年时间引进千名以上高层次人才”项目、天津市131第三层次人才、获得中国运筹学会不确定系统分会“钟家庆运筹学奖”。担任中国运筹学会不确定系统分会理事长、中国运筹学会理事,ABS3*国际期刊《Fuzzy Optimization and Decision Making》副主编。
邀请人:张志民
欢迎广大师生积极参与!