金晓清

日期:2019-03-12 作者:金晓清 点击:[]

个人简介

金晓清教授师从固体力学家、美国工程院院士 Leon M. Keer 教授,于 2006 年在美国西北大学获得理论与应用力学方向博士学位。随后与 Q. Jane Wang(王茜)教授合作,从事博士后研究。2013 年 2 月,获选重庆大学“百人计划” 全职回国,加入机械传动国家重点实验室,现担任重庆大学航空航天学院工程力学系主任。研究领域聚焦断裂疲劳、接触力学、摩擦学、微观力学等国际前沿, 已发表学术论文被谷歌学术收录约 100余 篇(http://scholar.google.com/citations?user=5oF2f9IAAAAJ),被引 1100 余次,论文发表于众多力学、摩擦学领域的国际顶级期刊,如 JMPS、IJES、IJP、TribInt 等,与合作者的摩擦学论文获得美国摩擦学家与润滑工程师协会(STLE)2014 年度最近论文奖。为国家自然科学基金、国家留学基金委、多个省市科技委担任项目评审专家,现任我国轴承行业旗舰刊物《轴承》编委,及摩擦学领域国际学术期刊《Frontiers in Mechanical Engineering - Tribology》的评审编委,已为二十多种国际著名学术刊物担任评审工作,并应邀在国内外会议、中美高校、汽车行业公司做报告60余次。作为项目负责人主持国家自然科学基金面上项目2项,中央高校基本科研业务费重点项目3项,及多项重庆市科学基金项目与企业横向项目;参与自然科学基金重点项目1项,国家重点研发计划子课题1项。近两年获得授权发明专利5项,并合作编写专著1部。


教育背景
1991.9-1995.6 同济大学,工程力学系,学士
1995.9-1998.6 清华大学,工程力学系,硕士
1998.9-2006.8 美国西北大学,土木工程系,博士

工作经历
2016.09 -至今 重庆大学航空航天学院 研究员、博导
2013.02-2016.09 重庆大学机械国家重点实验室 研究员、博导
2012.10-2012.11 重庆大学 访问助理教授
2011.07-2013.02 美国西北大学 助理研究员
2006.09-2011.07 美国西北大学 博士后研究员

研究方向
摩擦学与表面工程、断裂疲劳与固体力学、复合材料与细观力学
学术兼职
《轴承》期刊编委
国家自然科学基金面上项目评审, 2015, 2016
陕西省科技项目评审, 2014.
多种英文SCI及中文学术期刊评审:
Journal of the Mechanics and Physics of Solids (JMPS)
Mechanics of Materials (MOM)
International Journal of Fatigue
Journal of Tribology
Tribology Transaction
International Journal of Mechanical Sciences
Acta Mechanica
Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM)
Engineering Analysis with Boundary Elements (EABE)
Mechanics Research Communications (MRC)
Optics & Laser Technology (JOLT)
International Journal of Computational Methods (IJCM)
International Journal of Materials and Product Technology (IJMPT)
Journal of Aerospace Engineering (ASENG)
Journal of Donghua University (English Version)
Journal of East China University of Science and Technology
Chinese Journal of Applied Mechanics
Applied Mathematics and Mechanics
Acta Materiae Compositae Sinica
清华大学博士论文评审, 2013, 2014.
重庆大学博士、硕士论文评审, 2013.
章节编委及评审Encyclopedia of Tribology, edited by Q. Wang, and Y. Chung, Springer, New York, 2013.
审稿专家, World Tribology Congress III (WTC 2005)
审稿专家, Eleventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm 2008)
学生志愿者, 7th World Congress on Computational Mechanics (WCCM VII) 2006
分会场主席, 7th World Congress on Computational Mechanics (WCCM VII) 2006
分会场主席, International Joint Tribology Conference (IJTC) 2008, 2009, 2010
分会主题组织者Track Co-Chair, International Joint Tribology Conference (IJTC) 2010
美国机械工程师协会(ASME)摩擦学分会接触力学委员会委员2011, 2012
大会秘书, International Symposium on Bearing Research Frontiers (ISBRF), 2015
Member, American Society of Mechanical Engineers (ASME)
Member, Society of Tribologists and Lubrication Engineers (STLE)
代表性研究项目
1. 国家自然科学基金面上项目,项目批准号:51875059,项目名称:含夹杂或裂纹非均质材料摩擦磨损的微观机理研究
2. 国家自然科学基金面上项目,项目批准号:51475057,项目名称:轴承钢接触疲劳的微观结构演化机理和实验研究
3. 中央高校基本科研业务费专项项目,项目批准号:CYB17025,项目名称:非均质材料接触疲劳的微观力学机理和实验研究
4. 中央高校基本科研业务费专项项目,项目批准号:CYB18020,项目名称:高周接触疲劳的白蚀带微观机理研究
5. 重庆市留学人员创业创新支持计划,项目名称:滚动轴承接触疲劳的微观机理与寿命模型研究
6. 重庆大学研究生教育教学改革研究项目:双一流”背景下力学研究生培养模式与教学改革的探索与实践—基于国家“卓越人才”建设的视角
7. 企业项目:变强度铝合金保险杠横梁抗撞性研究、装配式建筑预制构件力学与抗震性能研究、钢筋桁架楼承板的力学与耐火性能研究
8. 重庆市基础研究与前沿探索项目,项目批准号:1020708920130131,项目名称:非金属夹杂物对轴承钢疲劳寿命影响的蒙特卡罗仿真
9. 重庆大学“百人计划”,机械传动国家重点实验室配套科研启动基金
10. 重庆大学英文课程:Finite Element Method Analysis
11. 高端外国专家引进计划:
(1) 粘附接触及渐近分析理论,项目编号:G2021165001L
(2) 生物材料的相关力学与摩擦学问题研究,项目编号:G20190022015
(3) 微纳米压痕技术:力学机理及其应用,项目编号:G20190022013

最新出版物

1. AMM论文
Gravitational settling of a cell on a high-aspect-ratio nanostructured substrate — an asymptotic modeling approach. Applied Mathematical Modelling,2022,108(8).
doi:10.1016/j.apm.2022.03.041
2. CMAME论文
Multiscale computational framework for predicting viscoelasticity of red blood cells in aging and mechanical fatigue. Computer Methods in Applied Mechanics and Engineering,2022,391.
doi: https://doi.org/10.1016/j.cma.2021.114535
3. JMPS论文
(1) Depth-sensing spherical indentation of an elastic sphere on an elastic substrate. Journal of the Mechanics and Physics of Solids, 2021, 149: 104297.
doi: https://doi.org/10.1016/j.jmps.2021.104297
(2) Collective indentation as a novel strategy for mechanical palpation tomography. Journal of the Mechanics and Physics of Solids, 2020, 143: 104063.
doi: https://doi.org/10.1016/j.jmps.2020.104063
(3) 3D coupled field in a transversely isotropic magneto-electro-elastic half space punched by an elliptic indenter. Journal of the Mechanics and Physics of Solids, 2015, 75: 1-44.
doi: https://doi.org/10.1016/j.jmps.2014.11.002
(4) Refined Dugdale plastic zones of an external circular crack. Journal of the Mechanics and Physics of Solids, 2008, 56(4): 1127-1146.
doi: https://doi.org/10.1016/j.jmps.2007.10.009
4. IJES论文
(1) Depth-sensing indentation of spherical particles on corrugated substrates — An asymptotic model. International Journal of Engineering Science, 2020, 154: 103349.
doi: https://doi.org/10.1016/j.ijengsci.2020.103349
5. IJP论文
(1) Analytical solution for elastic fields caused by eigenstrains in a half-space and numerical implementation based on FFT. International Journal of Plasticity, 2012, 35: 135-154.
doi: https://doi.org/10.1016/j.ijplas.2012.03.002
6. MoM论文
(1) Analytical and numerical evaluation of the interaction energy between screw dislocation and inhomogeneous inclusion. Mechanics of Materials, 2021, 156: 103788.
doi: https://doi.org/10.1016/j.mechmat.2021.103788
(2) A new fast method for solving contact plasticity and its application in analyzing elasto-plastic partial slip. Mechanics of Materials, 2013, 60: 18-35.
doi: https://doi.org/10.1016/j.mechmat.2013.01.001
7. IJSS论文
(1) Elasto-plastic contact of materials containing double-layered inhomogeneities. International Journal of Solids and Structures, 2017, 126-127: 208-224.
doi: https://doi.org/10.1016/j.ijsolstr.2017.08.006
(2) An efficient approximate numerical method for modeling contact of materials with distributed inhomogeneities. International Journal of Solids and Structures, 2014, 51(19): 3410-3421.
doi: https://doi.org/10.1016/j.ijsolstr.2014.06.005
(3) Numerical methods for contact between two joined quarter spaces and a rigid sphere. International Journal of Solids and Structures, 2012, 49(18): 2515-2527.
doi: https://doi.org/10.1016/j.ijsolstr.2012.05.027
(4) New Green’s function for stress field and a note of its application in quantum-wire structures. International Journal of Solids and Structures, 2009, 46(21): 3788-3798.
doi: https://doi.org/10.1016/j.ijsolstr.2009.07.005
8. European Journal of Mechanics – A/Solids论文
(1) Analytical solution for the displacement of a polygonal inclusion with a special application to the case of linear eigenstrain. European Journal of Mechanics – A/Solids, 2020, 84(10): 104049.
doi: https://doi.org/10.1016/j.euromechsol.2020.104049
9. JAM论文
(1) Explicit analytical solutions for the complete elastic field produced by an ellipsoidal thermal inclusion in a semi-infinite space. Journal of Applied Mechanics, 2018, 85(5): 051005.
doi: https://doi.org/10.1115/1.4039373
(2) On the displacement of a two dimensional eshelby inclusion of elliptic cylindrical shape. Journal of Applied Mechanics, 2017, 84(7): 074501.
doi: https://doi.org/10.1115/1.4036820
(3) Explicit analytical solutions for a complete set of the eshelby tensors of an ellipsoidal inclusion. Journal of Applied Mechanics, 2016, 83(12): 121010.
doi: https://doi.org/10.1115/1.4034705
(4) A closed-form solution for the eshelby tensor and the elastic field outside an elliptic cylindrical inclusion. Journal of Applied Mechanics, 2011, 78(3): 031009.
doi: https://doi.org/10.1115/1.4003238
10. IJF论文
(1) Modeling rolling contact fatigue lives of composite materials based on the dual beam FIB/SEM technique. International Journal of Fatigue, 2016, 83: 201-208.
doi: https://doi.org/10.1016/j.ijfatigue.2015.10.014
(2) Effect of reinforcements on rolling contact fatigue behaviors of titanium matrix composite (TiB+TiC)/Ti–6Al–4V. International Journal of Fatigue, 2014, 66: 127-137.
doi: https://doi.org/10.1016/j.ijfatigue.2014.03.019
11. Engineering Fracture Mechanics论文
(1) A practical method for singular integral equations of the second kind. Engineering Fracture Mechanics, 2008, 75(5): 1005-1014.
doi: https://doi.org/10.1016/j.engfracmech.2007.04.024
12. IJF论文
(1) Numerical simulation of growth pattern of a fluid-filled subsurface crack under moving hertzian loading. International Journal of Fracture, 2007, 142(3): 219.
doi: https://doi.org/10.1007/s10704-006-9026-5
(2) Solution of Multiple Edge Cracks in an Elastic Half Plane. International Journal of Fracture, 2006, 137(1): 121-137.
doi: https://doi.org/10.1007/s10704-005-3063-3
13. Tribology International论文
(1) A thermoelastic contact model between a sliding ball and a stationary half space distributed with spherical inhomogeneities. Tribology International, 2019, 131: 33-44.
doi: https://doi.org/10.1016/j.triboint.2018.10.023
(2) Contact elasto-plasticity of inhomogeneous materials and a numerical method for estimating matrix yield strength of composites. Tribology International, 2018, 127: 84-95.
doi: https://doi.org/10.1016/j.triboint.2018.06.001
(3) Love's rectangular contact problem revisited: A complete solution. Tribology International, 2016, 103: 331-342.
doi: https://doi.org/10.1016/j.triboint.2016.07.011
(4) Numerical EIM with 3D FFT for the contact with a smooth or rough surface involving complicated and distributed inhomogeneities. Tribology International, 2016, 93: 91-103.
doi: https://doi.org/10.1016/j.triboint.2015.09.001
(5) A mesh differential refinement scheme for solving elastic fields of half-space inclusion problems. Tribology International, 2016, 93: 124-136.
doi: https://doi.org/10.1016/j.triboint.2015.09.009
(6) Elasto-plastic indentation of a half-space by a rigid sphere under normal and torque loading. Tribology International, 2013, 62: 141-148.
doi: https://doi.org/10.1016/j.triboint.2013.02.015
14. JoT论文
(1) Novel model for partial-slip contact involving a material with inhomogeneity. Journal of Tribology, 2013, 135(4): 041401.
doi: https://doi.org/10.1115/1.4024548
(2) An efficient numerical method with a parallel computational strategy for solving arbitrarily shaped inclusions in elastoplastic contact problems. Journal of Tribology, 2016, 135(3): 031401.
doi: https://doi.org/10.1115/1.4023948
(3) Numerical modeling of distributed inhomogeneities and their effect on rolling contact fatigue life. Journal of Tribology, 2016, 137(1): 011402.
doi: https://doi.org/10.1115/1.4028406
15. Tribology Transactions论文
(1) A numerical approach for analyzing three-dimensional steady-state rolling contact including creep using a fast semi-analytical method. Tribology Transactions, 2012, 55(4): 446-457.
doi: https://doi.org/10.1080/10402004.2012.667518
16. JoE论文
(1) On the solution of an elliptical inhomogeneity in plane elasticity by the equivalent inclusion method. Journal of Elasticity, 2014, 114(1): 1-18.
doi: https://doi.org/10.1007/s10659-012-9423-0
(2) Numerical implementation of the equivalent inclusion method for 2D arbitrarily shaped inhomogeneities. Journal of Elasticity, 2015, 118(1): 39-61.
doi: https://doi.org/10.1007/s10659-014-9477-2
17. JAP论文
(1) Fatigue initiation and propagation behavior in bulk-metallic glasses under a bending load. Journal of Applied Physics, 2010, 108(11): 113512.
doi: https://doi.org/10.1063/1.3501102
18. 其它相关论文代表作
(1) Semi-analytical solution for steady state heat conduction in a heterogeneous half space with embedded cuboidal inhomogeneity. International Journal of Thermal Sciences, 2019, 139: 326-338.
doi: https://doi.org/10.1016/j.ijthermalsci.2019.02.019
(2) A 3D EHL simulation of CMP: Theoretical framework of modeling. Journal of The Electrochemical Society, 2005, 152(1): G7.
doi: https://doi.org/10.1149/1.1823993
(3) Experiments and FEM simulations of fracture behaviors for ADC12 aluminum alloy under impact load. Metals and Materials International, 2016, 22(6): 1015-1025.
doi: https://doi.org/10.1007/s12540-016-6178-3
19. 部分EI论文
(1) 非均质材料与位错交互能的数值等效夹杂算法.工程力学, 2021.
doi: https://doi.org/10.6052/j.issn.1000-4750.2021.03.0229
(2) 任意形状热夹杂位移场的三角形单元离散算法.力学学报, 2021, 53(1): 205-212.
doi: https://doi.org/10.6052/0459-1879-20-240
(3) 均布激励基本单元解析解的一种记号方法.上海交通大学学报, 2016, 50(8): 1221-1227.
doi: https://doi.org/10.16183/j.cnki.jsjtu.2016.08.013
(4) 二维非均质材料应力场的数值化计算方法. 复合材料学报, 2014, 31(4): 1037-1045.

部分代表性著作
Feodor M.Borodich; Xiaoqing Jin ; Contact problems for soft, Biological and Bioinspired Materials, Springer International Publishing, 2022.
https://link.springer.com/book/10.1007/978-3-030-85175-0

已授权发明专利
1. 动静摩擦系数智能测量装置, 授权公告号: CN108444904B, 2021-06-29.
2. 用于夹持箱体类零部件的多功能夹具, 授权公告号: CN109551404B, 2020-07-31.
3. 带夹具切换功能的倒模定位装置, 授权公告号: CN109571326B, 2020-06-23.
4. 实验台用快速压紧装置, 授权公告号: CN108613692B, 2020-06-23.
5. 配对滚动轴承智能调试装置, 授权公告号: CN108827633B, 2020-03-31.


教育教学成果与主讲课程
1. 部分教育教学成果
(1) 为航空航天学院本科生主讲《塑性力学》荣获2021年重庆市一流本科线下课程
(2) 主持重庆大学研究生教育教学改革研究项目一项(已结题)
(3) 主持重庆大学示范性虚拟仿真实验教学项目一项(已结题)
(4) 申报重庆大学第一期“研究生全球学术课程(线上)项目”,与外国教授合作开设《Contact mechanics of biomaterials》
(5) 申报重庆大学第二期“研究生全球学术课程(线上)项目”,与外国教授合作开设《Micro-nano depth-sensing indentation: applications in material testing》
(6) 主持重庆大学全英文授课项目《Finite Element Analysis》,授课正在进行中
(7) 指导市级大学生创新创业项目1项(已结题),校级大学生科研训练计划1项
(8) 所指导的2名硕士研究生获得校级及重庆市优秀毕业论文
2. 主讲课程
《塑性力学》、《Finite Element Analysis》、《弹塑性力学》、《变分原理基础》、《现代力学的发展及其在工程中的应用》、《汽车结构强度有限元分析》、《汽车专业英语》、《研究生力学专题讲座》等

部分奖励与荣誉
1. “Frontiers in Mechanical Engineering”国际杂志编委
2. 担任行业旗舰杂志《轴承》第六届编委会委员
3. 荣获美国摩擦学家和润滑工程师协会(STLE)最佳论文奖—Captain Alfred E. Hunt Memorial Award,
4. 入选重庆市学术技术带头人及后备人选
5. 重庆市“百名海外高层次人才集聚计划”

研究生培养
目前在读博/硕士生10人,已毕业博士生2名,研究生14名,就职于博智林、上海航发等知名企业与研究机构。
欢迎具有力学、物理、材料及相关学科背景,且有志于科学研究的学生报考本课题组博士、硕士研究生;欢迎相关专业博士毕业生加入课题组从事博士后研究工作。

上一条:陈立明下一条:李卫国

关闭

Baidu
map